High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion.

نویسندگان

  • R D Schaller
  • V I Klimov
چکیده

We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly efficient carrier multiplication in PbS nanosheets

Semiconductor nanocrystals are promising for use in cheap and highly efficient solar cells. A high efficiency can be achieved by carrier multiplication (CM), which yields multiple electron-hole pairs for a single absorbed photon. Lead chalcogenide nanocrystals are of specific interest, since their band gap can be tuned to be optimal to exploit CM in solar cells. Interestingly, for a given photo...

متن کامل

PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron

We investigated the photovoltaic response of nanocomposites made of colloidal, infrared-sensitive, PbSe nanocrystals (NCs) of various sizes and conjugated polymers of either regioregular poly (3-hexylthiophene) (RR-P3HT) or poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylene vinylene) (MEH-PPV). The conduction and valence energy levels of PbSe NCs were determined by cyclic voltammetry and revealed t...

متن کامل

Carrier multiplication in silicon nanocrystals: ab initio results

One of the most important goals in the field of renewable energy is the development of original solar cell schemes employing new materials to overcome the performance limitations of traditional solar cell devices. Among such innovative materials, nanostructures have emerged as an important class of materials that can be used to realize efficient photovoltaic devices. When these systems are impl...

متن کامل

Phonons Do Not Assist Carrier Multiplication in PbSe Quantum Dot Solids

Carrier multiplication (CM)the Coulomb scattering whereby a sufficiently energetic charge excites a valence electronis of interest for highly efficient quantum dot (QD) photovoltaics. Using time-resolved microwave conductivity experiments on 1,2ethanedithiol-linked PbSe QD solids infilled with Al2O3 or Al2O3/ZnO by atomic layer deposition, we find that CM and hot-carrier cooling are temperatu...

متن کامل

Spectroscopy of carrier multiplication in nanocrystals

Carrier multiplication in nanostructures promises great improvements in a number of widely used technologies, among others photodetectors and solar cells. The decade since its discovery was ridden with fierce discussions about its true existence, magnitude, and mechanism. Here, we introduce a novel, purely spectroscopic approach for investigation of carrier multiplication in nanocrystals. Apply...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 92 18  شماره 

صفحات  -

تاریخ انتشار 2004